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COURSE CONTENT

1.      Introduction

Many examples of open channel flow can be approximated as uniform flow 
allowing the Manning equation to be used.  Non-uniform flow calculations are 
needed, however, in some open channel flow situations, where the flow is clearly 
non-uniform.  The concepts of supercritical, subcritical and critical flow, and 
calculations related to those three regimes of flow, are needed for non-uniform 
open channel flow analysis and calculations.   Hence, in this course, the 
parameter called specific energy will first be used to introduce the concepts of 
critical, subcritical, and supercritical flow.  Various calculations related to critical, 
subcritical and supercritical flow conditions will be presented, including 
hydraulic jump calculations.  The thirteen possible types of gradually varied non-
uniform flow surface profiles will then be presented and discussed.  Also, the 
procedure and equations for step-wise calculation of gradually varied non-
uniform surface profiles will be presented and illustrated with examples.
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2.      Specific Energy as an Introduction to Supercritical, Subcritical and 
Critical Flow

The parameter, specific energy, can be used to
help clarify the meaning of supercritical,
subcritical and critical flow in an open channel.
The definition of specific energy at any cross-
section in an open channel is the sum of the
kinetic energy per unit weight of the flowing
liquid and the potential energy relative to the

     Specifically, Just what bottom of the channel.  Thus an expression for
      is SPECIFIC ENERGY ? specific energy is as follows:

E  =  y  +  V2/2g (1)

Where: E  is the specific energy in ft-lb/lb

y  is the depth of flow above the bottom of the channel in ft

V  is the average liquid velocity (= Q/A) in ft/sec

g  is the acceleration due to gravity  =  32.2 ft/sec2 

Another form of the equation with Q/A in place of V is:

E  =  y  +  Q2/2A2g (2)

The way that specific energy varies with depth of flow in an open channel can be 
illustrated by considering a rectangular open channel with bottom width b.

For such a channel, A = yb, where b is the channel width.  Substituting for A in 
equation (2), gives:

E  =  y  +  Q2/(2 y2b2g) (3)
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The parameter q, the flow rate per unit width of channel, is often used for a 
rectangular channel.   The relationship between q and Q is thus:  q  =  Q/b 
or Q  =  qb.  Substituting for Q in equation (3) gives:

E  =  y  +  q2/(2 y2g) (4)

Equation (4) can be used to prepare a plot of specific energy, E, as a function of 
the channel depth, y, for a selected value of q.  Figure 1 below contains a table 
and graph showing how E varies with y for q = 15 cfs/ft.  As shown in the graph, 
specific energy has high values for large values of y and it has high values for 
very low values of y.  A close look at equation (4) provides an explanation.  The 
first term in the equation (potential energy) makes E large as y becomes large.  At 
very low values for y, the value of E is dominated by the second term in the 
equation (kinetic energy), which becomes large because of the small cross-
sectional area of flow at small values for y.  

At some intermediate depth of flow, the specific energy must have a minimum 
value.  The value of y at which the specific energy minimum occurs, is called the 
critical depth for the given value of q.  From the table and graph below, it can be 
seen that the critical depth for q = 15 cfs/ft is 1.9 ft, accurate to 2 significant 
figures.

The symbol yc  is commonly used for critical depth and will be so used in this 
course.  Through a little application of calculus, an equation for the critical depth, 
yc, can be derived.  The derivative of E with respect to y, dE/dy, must be 
determined from Equation (4), set equal to zero and solved for y.  This will give 
an expression for y that gives either a minimum or maximum value for E.  From 
inspection of the graph of E vs y in Figure 1, we can see that it must be a 
minimum value for E and that the value of y at that minimum is the critical depth, 
yc. This procedure yields the following equation for yc:

yc  =  (q2/g)1/3  (5)
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  Figure 1. Specific Energy vs Depth (Rect. channel, q = 15 cfs/ft)

E, ft-lb/lb Y, ft

8.055 8
6.097 6
5.140 5
4.218 4
3.388 3
2.873 2
2.868 1.9
2.878 1.8
2.965 1.6
3.183 1.4
3.626 1.2
4.494 1
6.259 0.8
10.305 0.6

Example #1:  Calculate the critical depth for a flow rate of 15 ft3/sec in a 
rectangular open channel.

Solution:  Using equation (5):  yc  =  (152/32.2)1/3  =  (6.988)1/3  = 1.912

Note that this value is consistent with the value of 1.9 from the Figure 1, but with 
more significant figures.

Any open channel flow having depth of flow less than critical depth ( y < yc ) will 
be represented by a point on the lower leg of the graph above, and is called 
supercritical flow.  Any open channel flow having depth of flow greater than 
critical depth ( y > yc ) will be represented by a point on the upper leg of the graph 
above, and is called subcritical flow.  The flow condition with y = yc is critical 
flow.
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The Froude Number for Rectangular Channels

The Froude Number for flow in an open channel is defined as:  Fr  = V2/gy, 
where V, y, and g are the average velocity, depth of flow, and acceleration due to 
gravity respectively.  Fr, is a dimensionless parameter used in a variety of ways 
with open channel flow.  

The equation below is obtained by substituting q  =  Q/b  =  VA/b  =  V(yb)/b  = 
Vy, into equation (5) and simplifying.

V2/gyc  =  1  or   Frc  =  1

This equation shows that the Froude number is equal to one at critical flow 
conditions.  Knowing that y > yc for subcritical flow, the Froude number must be 
less than 1 for subcritical flow.  Similarly, since y < yc for supercritical flow, the 
Froude number must be greater than one for supercritical flow.  Summarizing:

Fr  <  1   for subcritical flow

Fr  =  1   for critical flow

Fr  >  1  for supercritical flow

Example #2:  A rectangular open channel with bottom width = 2 ft, is carrying a 
flow rate of 12 cfs, with depth of flow = 1.5 ft.  A  cross-section of the channel is 
shown in the figure below.  Is this subcritical or supercritical flow?

                                       

Solution:  There is sufficient information to calculate the Froude Number, as 
follows:

A  =  by  =  (2)(1.5) ft2  =  3 ft2
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V  =  Q/A  =  12/3  =  4 ft/sec

Fr  =  V2/gy  =  (42)/(32.2)(1.5)  =  0.331

Since Fr  <  1, this is subcritical flow.  

The Froude Number for Non-rectangular Channels

The definition for the Froude Number for flow in a channel with non-rectangular 
cross-section is Fr  = V2/g(A/B),  where A is the cross-sectional area of flow and 
B is the surface width.  A and B are shown in Figure 2, for a general, non-
rectangular cross-section.  Note that A/B = y for a rectangular channel, so the 
definition, Fr  = V2/g(A/B), reduces to V2/gy for a rectangular channel.  This is 
simply a more general definition for the Froude Number.  The criteria noted 
above for the range of values of Fr for subcritical, supercritical and critical flow, 
apply to flow in non-rectangular channels as well.

                          

Figure 2.  A and B for Non-rectangular Cross-section

Example #3:  A trapezoidal open channel, with bottom width = 3 ft and side 
slope of horiz : vert = 3:1, is carrying a flow rate of 16 cfs, with depth of flow = 
0.6 ft.  Is this subcritical or supercritical flow?  See the diagram below.
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Solution:  There is sufficient information to calculate the Froude Number, as 
follows:  (recall from “Open Channel Hydraulics I”, that A  =  by + zy2).

A  =  by + zy2  =  (3)(0.6) + (3)(0.62) ft2  =  2.88 ft2

V  =  Q/A  =  16/2.88  =  5.55 ft/sec

B  =  b  +  2zy  =  3 + (2)(3)(0.6)  =  6.6 ft

Fr  = V2/g(A/B) =  (5.552)/(32.2)(2.88/6.6)  =  2.19

Since Fr  >  1, this is supercritical flow. 

Calculation of Critical Slope

The slope that will give critical flow for a given
flow rate in a channel of specified size, shape
and Manning roughness is called the critical
slope (Sc).  The critical slope can be calculated
from the Manning equation with parameters
for critical flow conditions  as follows:

 A channel with CRITICAL      Q = (1.49/n)Ac(Rhc
2/3)Sc

1/2                 (6)  
 SLOPE will carry water

 at CRITICAL FLOW ? Q and n will be known, along with channel shape
I guess that makes sense! and size parameters;  Ac & Rhc will be functions
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of yc ; and Sc is to be calculated from the equation.  The critical depth, yc, must be 
calculated first in order to get values for for Ac & Rhc .  Two examples will be 
done to illustrate this type of calculation, the first with a rectangular channel and 
the second with a triangular channel.

Example #4:  Find the critical slope for a rectangular channel with bottom width 
of 3 ft, Manning roughness of 0.011, carrying a flow rate of 16 cfs.

Solution:  First calculate the critical depth from:  yc  =  (q2/g)1/3  

Substituting values:   yc  =  ((16/3)2/32.2)1/3  =  0.9595 ft

Ac  =  byc  =  (3)(0.9595)  =  2.8785 ft2  

Pc  =  b + 2yc  =  3 + (2)(0.9595)  =  4.919 ft

Rhc  =  Ac/Pc  =  2.8785/4.919 ft  =  0.5852 ft

Substituting values into Eqn (6):    16 = (1.49/0.011)(2.8785)(0.58522/3)Sc
1/2  

Solving for Sc gives: Sc  =    0.00344  

Example #5:  Find the critical slope for a triangular channel with side slopes of 
horiz : vert = 3:1, Manning roughness of 0.012, carrying a flow rate of 12 cfs.
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Solution:  The critical depth (measured from the triangle vertex) can be 
calculated from the criterion that Fr  = V2/g(A/B) = 1 for critical flow, or 

                    Frc  = Vc
2/g(Ac/Bc)  =  1.

From the figure above:  Bc  =  2ycz  =  6yc

Ac  =   yc
2z  =  3yc

2  

Vc  =  Q/Ac  =   12/(3yc
2)

Substituting expressions for  Vc ,Ac , & Bc into the equation for Frc and setting it 
equal to 1 gives:                            
        

Believe it or not, this simplifies to 0.99378/ yc
5  =  1

Solving:  yc  =  0.9987 ft

Now, proceeding as in Example #4:

Ac  =  3yc
2  =(3)(0.9987)2  =  2.992 ft2  

Pc  =  2[yc
2(1 + z2)]1/2  =  2[(0.99872)(1 + 32)]1/2    =  6.317 ft

Rhc  =  Ac/Pc  =  2.992/6.317 ft  =  0.4736 ft

Substituting values into Eqn (6):    12 = (1.49/0.012)(2.992)(0.47362/3)Sc
1/2  

Solving for Sc gives: Sc  =    0.01530  

TERMINOLOGY:  A bottom slope less than the critical slope for a given channel 
is called a mild slope and a slope greater than critical is called a steep slope.
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3.      The Hydraulic Jump  

There are situations in which a subcritical slope will have supercritical flow 
taking place on it, such as flow under a sluice gate or a channel bottom slope 
changing from steep to mild.  When this happens, the flow must slow down to the 
subcritical flow that can be maintained on the mild (subcritical) slope.  There can 
be no gradual transition from supercritical to subcritical flow.  The transition from 
supercritical to subcritical flow will always be an abrupt transition.  That abrupt 
transition is called a hydraulic jump.  Figure 2 and Figure 3 show a couple of 
physical situations that give rise to a hydraulic jump.  The hydraulic jump is 
sometimes called rapidly varied flow.

           
      Figure 2.  Hydraulic Jump due to slope change from Steep to Mild

                             

     Figure 3.  Hydraulic Jump following Flow Under a Sluice Gate
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Figure 5 shows supercritical depth and velocity upstream of the jump and the 
subcritical depth and velocity downstream of the jump.  These parameters are 
often used in hydraulic jump calculations.  The supercritical (upstream) velocity 
and depth are represented by the symbols, V1 and y1.  The subcritical 
(downstream) velocity and depth are represented by the symbols, V2 and  y2.

                      

Figure 5.  Hydraulic Jump with Upstream and Downstream Parameters

Equation (7) below can be derived by starting with the continuity equation, the 
energy equation, and the momentum equation, each written across the hydraulic 
jump.  It gives a relationship among the depths upstream and downstream of the 
hydraulic jump and the Froude number upstream of the jump.

y2/y1  =  (1/2)[ -1 + (1 + 8Fr1
2)1/2 ]   (7)

Where:  Fr1  = V1
2/gy1  

Example #6:  The flow rate under a sluice gate in a 8 ft wide rectangular channel 
is 40 cfs, with a 0.7 ft depth of flow.  If the channel slope is mild, will there be a 
hydraulic jump downstream of the sluice gate?
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Solution:  From the problem statement:  y = 0.7 ft and Q = 40 cfs.  Average 
velocity, V, can be calculated and then Fr can be calculated to determine whether 
this is subcritical or supercritical flow.

V  =  Q/A  =  Q/yb  =  40/(0.7)(8)  =  7.143 ft/sec

Fr  =  V2/gy  =  (7.143)2/(32.2)(0.7)  =  2.264   (Fr > 1)

Fr > 1, so the flow after the sluice gate is supercritical.  The channel slope is 
mild, so there will be a hydraulic jump to make the transition from 
supercritical to subcritical flow.

Example #7:  What will be the depth of flow and average velocity in the 
subcritical flow following the hydraulic jump of Example #6?

Solution:  Equation (7) can be used with Fr1 = 2.264 and y1 = 0.7. 
Equation (7) becomes:

y2/0.7  =  (1/2)[ -1 + (1 + 8(2.264)2)1/2 ]   =  3.702

y2  =    2.591 ft  

V2  =  Q/A2  =  40/(8)(2.591)  =  1.93 ft/sec  =  V2  

4.       Gradually Varied Open Channel Flow

Non-uniform flow with a smooth, gradual change in depth is called gradually 
varied flow.   In contrast, rapidly varied flow refers to the flow in, before and 
after a hydraulic jump, where there is an abrupt transition from supercritical flow 
to subcritical flow.
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Gradually Varied Flow Surface Profile Classifications

The thirteen possible gradually varied flow surface profiles are shown in Figure 6 
on the next page.  Also shown is the classification scheme, which makes use of 
the following five possible types of channel bottom slope:

i)  mild (M):    (S  <  Sc),  

ii)  Steep (S):     (S  >  Sc), 
 

iii)  critical  (C):    (S  =  Sc),  

iv)  horizontal  (H):    (S  =  0),  and

v)  adverse  (A):    (upward slope).   

The three categories shown below are typically used as a classification of the 
relative values of actual depth of flow, y, normal depth, yo, and critical depth, yc.  

i) category 1:     y  >  yc  &  y  >  yo ;

ii) category 2:     y is between  yc  &  yo ;    
 

iii) category 3:     y  <  yc  &  y  <  yo.

For example, a non-uniform surface profile on a mild slope with  y  <  yc  and 
y <  yo  is called an M3 profile, and a non-uniform surface profile on a steep slope 
with y  >  yc  and  y  >  yo  is called an S1 profile.  The entire classification and the 
terminology typically used is shown in Figure 6, on the next page.  

Note that there cannot be an H1 or A1 surface profile, because neither a
horizontal nor adverse slope has a normal depth.  Neither of them can sustain 
uniform flow.
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                 Figure 6.  Gradually Varied Flow Surface Profile Classification
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 Figure 7.  Examples of Mild and Steep Gradually Varied Surface Profiles

Figure 7 shows physical situations which lead to the six classifications of 
gradually varied flow surface profiles that are possible for mild and steep 
slopes.

Gradually Varied Flow Surface Profiles by Stepwise Calculations

In uniform open channel flow, the flow depth is constant, so the slope of the 
liquid surface (the surface slope) is the same as the channel bottom slope.  In 
gradually varied open channel flow, however, the depth of flow is not constant, so 
the surface slope is different than the channel bottom slope.  What's more, the 
surface slope isn't even constant for gradually varied flow.
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If the depth of flow is increasing in the direction of flow, then the surface slope 
will be greater than the bottom slope.  If the depth of flow is decreasing in the 
direction of flow, then the surface slope will be less than the bottom slope.

Figure 8 illustrates the general relationship between channel bottom slope and 
surface slope for uniform flow and for gradually varied non-uniform flow.

      

         Figure 8.  Uniform Flow and Gradually Varied Non-uniform Flow

Figure 9 shows a longitudinal section of a reach of open channel that has 
gradually varied non-uniform flow in it.    This diagram will be used to help in 
developing an equation that can be used for stepwise calculation of a gradually 
varied flow surface profile (depth of flow vs length in direction of flow).  The 
kinetic energy head and potential energy head at the inlet and outlet ends of the 
channel reach are shown in the diagram, along with the channel bottom slope and 
the head loss over the channel reach.  The parameters in the diagram are 
summarized here:

Potential energy head of flowing water in (ft-lb/lb)  =   y1 + SoL

Kinetic energy head of flowing water in (ft-lb/lb)  =  V1
2/2g

Potential energy head of flowing water out (ft-lb/lb) =   y2 

Kinetic energy head of flowing water out (ft-lb/lb)  =  V2
2/2g

Frictional head loss over channel reach of length L  =  hL

Channel bottom slope = So  
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    Figure 9. Gradually Varied, Non-uniform Flow in a Reach of Open Channel

A statement of the First Law of Thermodynamics (conservation of energy), as 
applied to the reach of channel in Figure 9, is:

Energy per lb of water flowing into the reach  =  Energy per lb of water 
flowing out of the reach  +  Frictional head loss over the reach of channel

Putting in the parameters from above,  the equation becomes:

y1 + SoL  +  V1
2/2g  =  y2  +  V2

2/2g  +  hL (8)

Note that the frictional head loss over the channel reach is equal to SfL, where Sf 

is the slope of the energy grade line, or:

hL  =  SfL  

Substituting into equation (8) and solving for y1 -  y2, gives the following:

y1 -  y2  =   (V2
2  -  V1

2)/2g  +  (Sf  -  So)L (9)
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Equation (9) works very well for making a stepwise calculation of the gradually 
varied surface profile for a length of open channel.  Each step can be taken to be a 
reach of channel such as that shown in Figure 9.

Equation (9) is typically used to calculate the length of channel, L, required for 
the depth of flow to change from y1 to y2.  Parameters that must be known are the 
channel bottom slope, So, the size and shape of the channel cross-section, the 
Manning roughness of the channel surface, n, and the flow rate through the 
channel, Q.

Parameters in equation (9) that need to be calculated before calculating L are V1, 
V2, and Sf.  With known channel flow rate, Q, and known channel shape and size, 
the velocity at each end of the channel reach can be calculated from:

V1 = Q/A1     and      V2 = Q/A2  

The value for Sf  can be estimated from the Manning Equation: 

Sf  =  [nQ/(1.49AmRhm
2/3)]2  

NOTE:  The slope used in the above equation is the slope of the energy grade 
line, not the bottom slope, as you are probably accustomed to using in the 
Manning equation.  The slope to be used in the Manning equation is actually the 
slope of the energy grade line, but for uniform flow, the water surface slope, the 
energy grade line slope and the bottom slope are all the same, so the channel 
bottom slope can be used.

Am  and  Rhm   are mean values across the reach of channel, that is:

Am  =  (A1 + A2)/2      and       Rhm  =  (Rh1 +  Rh2)/2
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Some typical values for Manning roughness coefficient, n, for a variety of 
channel surfaces are given in Table 1, below.

           Table 1.  Manning Roughness Coefficient, n, for Selected Surfaces

  Manning Roughness
Channel Surface Coefficient, n

  

 Asbestos cement 0.011
 Brass 0.011
 Brick 0.015
 Cast-iron, new 0.012
 Concrete, steel forms 0.011
 Concrete, wooden forms 0.015
 Concrete, centrifugally spun 0.013
 Copper 0.011
 Corrugated metal 0.022
 Galvanized Iron 0.016
 Lead 0.011
 Plastic 0.009
 Steel - Coal-tar enamel 0.01
 Steel - New unlined 0.011
 Steel - Riveted 0.019
 Wood stave 0.012
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Example #8:  A rectangular wood stave
flume (n = 0.012) is 4 ft wide and carries
40 cfs of water.  The bed slope is
0.0005, and at a certain section the depth
is 2.6 ft.  Find the distance to the section
where the depth is 2.4 ft.  

Solution:  A single step calculation will be
  Watch out here !  This used for the 0.2 ft change in depth.  From
  isn't hard, but there are the problem statement:  Q = 40 cfs, 
  a lot of steps and it can  n = 0.012, So = 0.0005,  b = 4 ft, y1 = 2.6 ft,
     get tedious !!  and y2 = 2.4 ft.  

The other necessary parameters are calculated as follows:

V1  =  Q/A1  =  40 ft3/sec/(4)(2.6)ft2  =  3.846 ft/sec

V2  =  Q/A2  =  40 ft3/sec/(4)(2.4)ft2  =  4.167 ft/sec

Am  =  (A1 + A2)/2   =  [(4)(2.6) + (4)(2.4)]/2  =  10 ft2  

Rh1  =  A1/ P1  =  (4)(2.6)/[4 + (2)(2.6)]  =  1.130 ft

Rh2  =  A2/ P2  =  (4)(2.4)/[4 + (2)(2.4)]  =  1.091 ft

Rhm  =  (Rh1 +  Rh2)/2  =  (1.130 + 1.091)/2  =  1.110 ft

Sf  =  [nQ/(1.49AmRhm
2/3)]2  =  [(0.012)(40)/(1.49(10)(1.1102/3)]2  

=  0.0009030

Substituting all of these values into equation (9) gives:
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2.6 -  2.4  =   (4. 1672  -  3.8462)/(2)(32.2)  +  (0.0009030 – 0.0005)L

Solving for L:    L  =  397 ft

Example #9:  In Example #8, is the 2.8 ft depth upstream or downstream of the 
2.4 ft depth?

Solution:  Since L as calculated from equation (9) is positive,  the 2.8 ft depth is 
upstream of the 2.4 ft depth.

NOTE:  Equation (9) is written with L being positive for y1 being the upstream 
depth and y2 being the downstream depth.  In the solution to Example #8, y1 was 
set to be 2.6 ft and y2 was set to be 2.4 ft (the flow was assumed to be from 2.6 ft 
to 2.4 ft of depth.  Since L came out positive in the calculation, this confirmed 
that the assumed direction of flow was correct.  If L had come out negative, it 
would have meant that the flow was in the opposite direction.

As you can see from the diagrams in Figure 7, the depth can be either increasing 
or decreasing in the direction of flow, depending upon which type of non-
uniform, gradually varied flow is present.  You cannot simply assume that the 
flow is from the higher to lower depth of flow.

Example #10:  a)  Which classification of non-uniform, gradually varied flow is 
the flow in Example #8?
       b)  What is a physical situation that would lead to the type of surface profile 
in Example #8?

Solution:  a)  Calculation of critical depth and critical slope for the channel will 
often provide enough information to determine the gradually varied flow 
classification.  Let's try:

The critical depth is given by equation (5): 

                      yc  =  (q2/g)1/3  =  [(40/4)2/32.2]1/3  =  1.46 ft

The critical slope can be calculated from equation (6):   
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Q = (1.49/n)Ac(Rhc
2/3)Sc

1/2     

Substituting known values gives:  

40 = (1.49/0.012)[(1.46)(4)][(1.46)(4)/(4 +(2)(1.46)]2/3( Sc
1/2)

Solving for Sc  gives:     Sc  =  0.00326

The given channel bottom slope, So, is 0.0005, which is less than Sc, so this 
channel slope is mild.  From Figure 6, one can see that M2 is the only gradually 
varied profile on a mild slope that has the depth of flow decreasing in the 
direction of flow, as in Example 8, so the gradually varied surface profile in 
Example #8 must be M2.

b)  The diagrams in Figure 7 shows that a dropoff is an example of a physical 
situation that would lead to an M2 surface profile.

Example #11:  A rectangular channel is 20 ft wide, has a slope of 0.0003 (which 
is a mild slope) and Manning roughness of 0.015.  The normal depth for this 
channel is 10 ft when it is carrying its current flow of 1006 cfs.  Due to an 
obstruction, the depth of flow at one point in the channel is 16 ft.  Determine the 
length of channel required for the transition from the 16 ft depth back to a depth 
of 11 ft.  Use step-wise calculations with depth increments of one foot.

Solution:  The physical situation as described for this example is like that shown 
in Figure 7 for an M1 surface profile.  That is the depth is increasing in the 
direction of flow in order to pass over an obstruction.  A set of calculations like 
those of Example #8 will be done five times (for 11 to 12 ft; for 12 to 13 ft; etc, 
up to 15 to 16 ft).  For repetitive calculations like this it is convenient to use a 
spreadsheet such as Excel.

The table below is copied from the Excel spreadsheet in which the calculations 
were made.  In each column, calculations are made as shown above for Example 
#8.  It can be seen that the distance for the transition from a depth of 11 ft to a 
depth of 16 ft is 35,412 feet or 6.71 miles.  The positive sign for L shows that the 
flow is indeed from the 11 ft depth to the 16 ft depth, which confirms what we 
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already knew from the problem statement and the understanding that this is an 
M1 surface profile.

    Table 2.  Excel Spreadsheet Solution to Example #11

Example #12:  Prepare a plot of depth vs distance along the channel to show the 
shape of the surface profile for the flow described in Example #11.  

Solution:  This can be accomplished by plotting y vs cumulative L using values 
from Table 2.  Figure 10 on the next page shows the plot, prepared with Excel. 
The table of values for L and y that were used for the plot is shown.  The shape of 
the surface profile is the same as that for the M1 profile shown in Figure 7.
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Figure 20.  Surface Profile Plot for Example #12

5. Summary

The value of the Froude number can be used to determine whether a particular 
open channel flow is subcritical or supercritical flow.  A hydraulic jump will 
make the abrupt transition from supercritical to subcritical flow, whenever 
supercritical flow is present on a mild slope that cannot maintain the supercritical 
velocity.  Gradually varied non-uniform flow is any non-uniform flow in which 
the depth is changing gradually and smoothly instead of abruptly and turbulently 
as in a hydraulic jump.  There are only 13 possible gradually varied flow 
variations.  These 13 variations are typically classified, based on the slope of the 
channel and the relationships among  y,  yc, &  yo.  A particular gradually varied 
flow water surface profile can be calculated as depth versus distance along the 
channel using a step-wise calculation, which was discussed and illustrated with 
examples in this course.  

Hydraulic Jumps and Supercritical & Non-Uniform Open Channel Flow – C02-024 

 

24

 



6. Related Links and References

1.  Munson, B. R., Young, D. F., & Okiishi, T. H., Fundamentals of Fluid 
Mechanics, 4th Ed., New York: John Wiley and Sons, Inc, 2002.

2.  Chow, V. T., Open Channel Hydraulics, New York: McGraw-Hill, 1959.

Websites:

1.  Indiana Department of Transportation Design Manual, available on the 
internet at: http://www.in.gov/dot/div/contracts/standards/dm/index.html.  
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